Description
The demand on thermoplastic components for lightweight constructions is continuously rising in the automotive as well as in the aerospace industry. The quasi-simultaneous laser transmission welding is an established joining technique in industry, but so far, it is usually not used for high strength applications as well as for safety-relevant components. This is caused by the lack of process understanding in case of producing high strength joints. Especially the temperature in the joining zone is a crucial process characteristic. Up to now, it was not measured in the needed precision. The quasi-simultaneous laser transmission welding of polyamide 6, especially the correlation between process characteristics and the joint strength is analyzed in this work. Therefore, a 3D-scanner with integrated pyrometer was realized and calibrated for the measurement task. It is shown, that the detected heat radiation is mainly coming from the core of the weld seam. The core temperature in the quasi-stationary process state is in direct correlation with the joint strength. The core temperature represents the mobility of the macromolecules in the polymer. An increased mobility leads to a better diffusion, relaxation or retardation of the macromolecules across the joining interface. A process window is defined on basis of the core temperature. The process setting which leads to a high joint strength as well as to the shortest irradiation time is found on the upper corner of the process window. The temperature can be measured with the needed precision by using the herein shown 3D-scanner with integrated pyrometer as well as by using the developed numerical process model. In conclusion, these tools for process diagnostics and the results of this work are useful for the production of welds with high joint strength and short welding times.
Reviews
There are no reviews yet.